

PART 1: ONBOARDING

Meta Ideas:

- 1. Must share ______ behind framework first, not just start ______ pictures.
- 2. Start with only one or two ______ at a time. Slowly unroll, like a flower
- 3. Move from _____ content to _____, rather than new _____+ new content.

Meta Idea One

Method 1: The idea of icons (from Day 1)

PowerPoint you can use to intro to students (optional) bit.ly/intro-icons.

Method 2: A learning language

What are some terms in your discipline?

Method 3: Introduce yourself with icons | Use frames

Meta Idea Two

What could I use for a Rules example from my discipline?

Meta Idea Three

What is something students know well that you could layer an element of Depth & Complexity onto?

Onboard students to each element.

PART 2: CONTENT IMPERATIVES

Why use them? Two reasons:

_	
Т	
	-

2.

Origin: The or cause	
Convergence: Coming together of	or
Contribution: Action or object that bring	s or advancement
Paradox: A thing that contains oxymoron	qualities; incongruity;
Parallel: A thing that is at same time, way, or plac	_ or comparable to another; something that ce

Pairs Nicely With:

- Multiple Perspectives
- Details
- Trends
- Over Time

Origin Word Search

BNHGGLAULOHRNMDFGPMD LBZGNKYRZKELBVCVVWJZ CBKHEEBEZIMAGNKRVFEB X P M X S O U R C E F P D F O S B B J X Η S Α J Ρ Υ J Κ Χ D Η V Τ Τ Α Υ Η Β Χ L R O G G U Y O K Y W C A T A L Y S T D B V D R I D P P E Y C O E K M A K O O S V D H B I X F Y Q B X V B Y P Q H R O O T EOUNYJVOUEBBELODIUGD R P L U G A I K D Y G I V J G S D H E F IYAVRNVKIWXIEFIIGARB V D R N X C C I X B C O N L V S D A M E ABDCJMTYBATHRNPAOLIP TODAFYEEUBOTWTIBAONT ILCKRQJSXPCRWUONC Т ΑY OTZYEGASKIMPUZJNGP ΤU Ν S C W L T N K J G S K S A X J Y I ΤZ Q G A J I S B N Q P S B N I Z T W T O C G X K O G C O X C L Y M D S A U V E N R EHNIXRKWTYFOUNDATION

beginning	root	source	foundation	basis
catalyst	causation	germination	derivation	

Origins asks:

How did this begin? What was the cause, origin, impetus, or stimulus?

What are elements of my content worth exploring through this lens?

Pairs Nicely With:

- Patterns
- Details
- Big Idea
- Over Time

MERGING | CONCURRENCE | INTERSECTION | MEETING POINTS | JOINING | UNION | CONJUNCTION | COMING TOGETHER

Convergence asks:

How did all of this come together? What were the meeting points? How did they merge? Successfully? Not?

What are elements of my content worth exploring through this lens?

This imperative asks two things of the learner:

Who or what			
h			Evaluate the
h		Ο	s
	_	Χ.	e
was	in		i
p	in		v
	?		of that contribution.

Looking for: (cross out ones we're NOT looking for)

CONTRADICTIONS	ALIGNMENT	DILEMMAS	LOGIC
IRONY	OPPOSITES	CONSISTENCY	ANTITHESIS
INCONGRUITY	QUANDARIES	JUXTAPOSITION	RATIONALITY

Paradox asks:

What are the opposing ideas? What are the inconsistencies? What conflicting ideas am I being asked to accept simultaneously?

parallel Parallel

Ideas or events that are that are similar and can be compared to one another.

Parallel asks:

What is similar?

What is comparable?

What synonyms exist?

What connections can we make?

PART 3: THINKING LIKE A DISCIPLINARIAN

What do all disciplines have?

- Taxonomy
- Methodology
- Vocabulary
- Set of Rules
- Set of Skills

Your Example:

- Taxonomy
- Methodology
- Vocabulary
- Set of Rules
- Set of Skills

The Limits of Disciplinarianism by Dan Willingham, Ph.D. (excerpted from <i>Why Students Don't Like School</i>)	
Cognition early in training is fundamentally different from cognition late in training. It's not just that students know less than experts; it's also that what they know is organized differently in their memory.	
Expert scientists did not think like experts-in-training when they started out. They thought like novices. In truth, no one thinks like a scientist or a historian without a great deal of training. It takes more than knowledge to be an expert. When an expert doesn't get the right answer, the wrong answer is usually a pretty good guess. Experts are better able to single out important details, produce sensible solutions, and transfer their knowledge in similar domains.	
Novice teachers fail to notice misbehaviors, whereas experts rarely miss them. Experts don't think in terms of surface features, as novices do; they think in terms of functions, or deep structure. In a study of chess experts versus novices, the groups were briefly shown a chess game in progress and asked to reproduce the pieces the way they'd seen them on the board; The novices did it by position on the board (what had been in the left corner, etc.). The experts did it by functional units.	
Experts think abstractly. Novices think concretely.	
Experts know a lot in order to make working memory not so overloaded. For instance, there are 50,000 game positions in the minds of great chess players. How do we teach expertise? Sustained work.	
Goal with novices is not knowledge creation, but knowledge comprehension Sternberg (2003) suggested the idea that conventional methods of schooling create "pseudo-experts" among students whose abilities in a subject area do not match the work and type of thinking needed to solve real-world problems within it.	
It we wish to teach expertise to students, Sternburg (2003) stated that two things are required: (1) to have the students perform tasks (or meaningful simulations of them) that experts accomplish within a discipline; and (2) teach them the methods of thinking that experts perform when executing their work.	

PART 4: COMBINING WITH STANDARDS

STEPS:

- 1. Look at the Standards
- 2. Leverage Bloom's to select a thinking skill
- 3. Choose Depth & Complexity element(s)
- 4. Select Resources
- 5. Choose a product piece

RESOURCES:

- <u>bit.ly/rev-bloom</u>
- See ideas for product piece on next page

NOTES:

- Differentiate for ability/interest using the same formula.
- Document what you've done, saving artifacts for your evaluation.
- Spend some quality time with the standards

- o add chapter to a book
- o advertisements
- o announcements
- o audiotape
- o autobiographies
- o awards
- o ballad
- billboards
- brochures
- book jackets
- booklets
- o **bulletin board**
- bumper stickers
- o captions
- o cartoon or comic
- case study
- chart or collage
- cereal boxes
- children's book
- o commentaries
- o conversations
- data table
- definitions
- o demonstrations
- o designs
- o detective story
- o dialogues
- diary entries
- dictionaries
- o dioramas or displays
- directions
- o drama scripts
- drawings/illustrations
- editorials or essays
- event chains
- experiments
- explanations
- fables or fairy tales
- fact sheets or books
- family tree
- o flag
- flow chart
- folk tales
- o friendly letter
- games / puzzles

- o game boards
- o graffiti
- o graph
- o group project
- o guidebooks
- historical (I was there)
- o idea webs
- \circ interviews
- o inventions
- o invitations
- o jokes
- o journals
- jump rope jingles
- o labels
- o legends
- \circ letters
- lexicons
- lies
- lists
- lyrics
- magazine page
- o manuals
- o maps
- math problems
- o **memoirs**
- memories
- o menus
- models
- movie scripts
- \circ murals
- o museum projects
- o music video
- musical instrument
- o mysteries
- o myths
- newscasts
- o newspaper articles
- o obituaries
- o opinions
- o oral presentations
- o oral reports & visuals
- o pamphlets
- peer editing
- o **petition**

9 | Depth & Complexity: Day 2 | Lisa Van Gemert | giftedguru.com

persuasive writing

- photo album
- o plays
- o poems
- position statements
- postcards
- o poster
- o proposals

recipe

reports

requests

resumes

retellings

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

- puppet shows
- o reader's theatre
- o reading journal

research report

reviews of books

scale models

scenery for play

science display

scrapbook

o shadow box

o social media

sociogram

speeches

story problem

• television scripts

summaries

telegrams

o time capsule

• Venn diagram

o weather map

written debates

o short story

skits

songs

survey

o terrarium

o timeline

o tribute

o video

0

o sculpture

rules of etiquette

signs or sketches

responses to literature

PART 4: ACTIVITIES WITH THE ELEMENTS

- 1. Frames.
 - a. Download at giftedguru.com/depth-complexity-frames
 - b. Use frames to:
 - ✓_____ ✓_____
 - •_____
 - c. Variations:
 - \checkmark Content in the center
 - ✓ Combine elements in each section
 - $\checkmark \text{Affective domain}$
 - d. Best practices
 - \checkmark Give an example to show how to a strong one would look
 - \checkmark Use throughout activity with fidelity, not just part way
- 2. Differentiate
 - Use the elements to differentiate by assigning students to different elements or combinations of elements.
 - ✓ Useful for group work as well (able to tell who did what).
- 3. Centers/Learning Stations
 - \checkmark Find an activity you want to use.
 - \checkmark Align it with the framework.
 - ✓ Differentiate it by either combining elements or adjusting challenge
- 4. Set up classwork or homework
- 5. Combine elements and use task statements
 - a. Thinking Skill (Think Bloom's)
 - b. Element[s] of Depth & Complexity
 - c. Resources + [Research] Skill[s]
 - d. Product
 - \checkmark Use this for objective statements as well as for student task assignments.
- 6. Combine with Thinking Maps (or any graphic organizer)

Learning Skill	Element[s]	Thinking Map
Main Idea		
Details		
Sequence		
Cause and Effect		
Compare/Contrast	69	
Making Predictions	??? ••••	
Meaning in Context	$\langle \mathfrak{S} \rangle$	
Fact v. Opinion/ Fiction v. Nonfiction/ Fantasy v. Reality	60 😂 💥	
Making Inferences		
Author Purpose	60	\bigcirc
Figurative Language/ Literary Devices		as

- 7. Sociograms
 - ✓ Students create a visual representation of the relationships among characters. One option: The central character in a work is placed at the center of a page and all the other characters are placed around him/her; spatial relationships, size, shape, color, etc. are all used to represent their relationship to one another.
 - ✓ Alternate uses in my content:

- 8. Create fake Wikipedia page using elements of framework ✓ Download at <u>http://bit.ly/fake-wiki</u>
- 9. Folding activities & Interactive Notebooks
 ✓I bought my folding templates from http://bit.ly/foldable-templates to make my own.
- 10. Pathways (using elements in combination with each other)

*Math thing: <u>bit.ly/depth-complex-math</u>

Thanks to David Chung (<u>gatepathways.blogspot.com</u>) and Envision Gifted (<u>envisiongifted.com</u>) for student work samples.